K型熱電偶在工業(yè)市場的應用
熱電偶由二根不同的金屬線材,將它們一端焊接在一起構成,如圖1所示;參考端溫度(也稱冷補償端)用來消除鐵-銅相聯及康銅-銅聯接端所貢獻的誤差;而兩種不同金屬的焊接端放置于需要測量溫度的目標上。
兩種材料這樣聯接后會在未焊接的一端產生一個電壓,電壓數值是所有聯接端溫度的函數,熱電偶無需電壓或電流激勵。實際應用時,如果試圖提供電壓或電流激勵反而會將誤差引進系統(tǒng)。
鑒于熱電偶的電壓產生于兩種不同線材的開路端,其與外界的接口似乎可通過直接測量兩導線之間的電壓實現;如果熱電偶的的兩端頭不是聯接至另外金屬,通常是銅,那末事情真會簡單至此。
但熱電偶需與另外一種金屬聯接這一事實,實際上又建立了新的一對熱電偶,在系統(tǒng)中引入了極大的誤差,消除此誤差的Wei一辦法是檢測參考端的溫度(參見圖1),以硬件或硬件-軟件相結合的方式將這一聯接所貢獻的誤差減掉,純硬件消除技術由于線性化校正的因素,比軟件-硬件相結合技術受限制更大。一般情況下,參考端溫度的精確檢測用熱電阻RTD,熱敏電阻或是集成電路溫度傳感器進行。原則上說,熱電偶可由任意的兩種不同金屬構建而成,但在實踐中,構成熱電偶的兩種金屬組合已經標準化,因為標準組合的線性度及所產生的電壓與溫度的關系更趨理想。
熱電偶是一種高度非線性器件,需作大力線性化算法處置。表3的西貝克系數是某種熱電偶在規(guī)定溫度下的平均飄移。
熱電偶交貨時,其性能由制造商按NIST175標準保證(此標準已被ASTM采納),標準規(guī)定了熱電偶的溫度特性以及所用原材料的品質。與熱電阻RTD,熱敏電阻及集成電路硅傳感器相比,熱電偶的非線性極其嚴重,因此,在電路部分,必須進行復雜的算法處理,表4所示是復雜算法的一個實例,這是溫度系數,可將其在0度至1372度范圍內予以線性化,這些系數應用于以下方程:
另一種這些復雜計算方法的應用是在處理程序中制作一張對照表,這樣一張表4所列的K型熱電偶的系數計算對照表是一組11X14陣列的十進制數,范圍為0.000-13.820;
除此之外,熱電偶由于與參考溫度之間有一定的函數關系,它能確定溫度的數值,(參考溫度定義為熱電偶導線相對其焊接端的遠端端頭溫度,通常用熱電阻RTD,熱敏電阻或硅集成電路傳感器測定)。
與熱電阻RTD,熱敏電阻相比,熱電偶的熱質量較小,因此其響應速度較快。這種溫度傳感器由于其寬廣的溫度檢測范圍,在一些惡劣環(huán)境下幾乎成為獨一無二的選擇。
熱電偶比較其他溫度傳感器的成本低,結構強度大,體積小;但材料所受的任何應力,如彎曲,拉伸,壓縮均可改變熱梯度特性;此外,腐蝕介質可穿透其絕緣外皮,引起其熱力學特性的改變,給熱電偶加一保護性管殼,如陶瓷管以作高溫保護是可行的,金屬熱阱也可提供機械保護。熱電偶電壓沿兩種不同金屬的長度方向上存在電壓降,但這并不意味著長度較短的熱電偶與長度較大的熱電偶相比,肯定會有不同的西貝克系數。
線材長度短,當然會使溫度梯度陡峻,但從導電效應來看,線材長度較大的熱電偶卻有它自己的優(yōu)點,這時溫度梯度是會小些,但導電損失也減小;但從長導線的負面效應來看,長線材熱電偶的輸出電壓小,增加了后續(xù)信號調理電路的負擔。
除了輸出信號小之外,器件的線性度差需要大額度的校準,通常是以硬件與軟件實現,如以硬件實現,需要一絕對溫度參考用作為冷端參考,如以軟件實現,則以對照表或多項式計算以減小熱電偶誤差。Zui后,電磁干擾會耦合進這雙線系統(tǒng);小線規(guī)線材可用作高溫檢測,壽命也會長些,但如果靈敏度成為Zui重要因素,則大線規(guī)線材的測量性能好些。
總起來講,熱電偶由于可測溫度范圍大,機械強度高,及價格低,成為溫度測量的常選。高精度系統(tǒng)要求的線性度及準確度,要實現并不容易。如果精度要求更高,則應選擇其他的溫度傳感器。
熱電阻測溫元件的技術在持續(xù)不斷地改進,溫度測量的質量在不斷提高,但要真正實現高質量、高精度的溫度測量系統(tǒng),熱電阻的器件選擇仍然極為重要。熱電阻系一電阻性的元件,由金屬制成,如鉑,鎳,銅等,所選金屬必須具有可以預測的電阻值隨溫度變化的特性,其物理性能要易于加工制造,電阻溫度系數必須足夠大,使其電阻隨溫度的改變易于準確測量。其他的溫度檢測器件,如熱電偶,并不能讓設計人員有一種相當線性的電阻隨溫度變化特性,而熱電阻這種線性度極好的電阻溫度特性,大大簡化了信號處理電路的設計制作。圖5所示系熱電阻的溫度電阻特性,其中又以鉑電阻在三種金屬中具有Zui為精確、可靠的溫度電阻特性。
因此,鉑電阻Zui適于需要Zui高的絕對精度及重復性使用場合,它對環(huán)境的敏感度極低,與此相比,銅電阻則易產生腐蝕,長期穩(wěn)定性差,而鎳電阻雖然環(huán)境寬容度好,但適用溫度范圍較窄。
鉑電阻的對溫度響應的線性度好,化學惰性,容易加工制作直徑較細的線材或是厚度小的箔材,鉑的電阻率高于其他的熱電阻材料,在電阻值相同的情況要求用材少,適于對成本考慮較強,對熱響應講究的場合。
鉑電阻的熱響應速度影響測量時間,它還取決于電阻的殼體及本身的尺寸情況,元件本身的尺寸小,外殼尺寸也可做得小些,一般地說,響應速度要比以半導體制作的溫度傳感器響應快。
熱電阻在攝氏零度的絕對電阻數值范圍很大,可以由用戶規(guī)定,如鉑電阻的標準電阻為100歐,但也有50,100,200,5001000or2000?等阻值。
兩種材料這樣聯接后會在未焊接的一端產生一個電壓,電壓數值是所有聯接端溫度的函數,熱電偶無需電壓或電流激勵。實際應用時,如果試圖提供電壓或電流激勵反而會將誤差引進系統(tǒng)。
鑒于熱電偶的電壓產生于兩種不同線材的開路端,其與外界的接口似乎可通過直接測量兩導線之間的電壓實現;如果熱電偶的的兩端頭不是聯接至另外金屬,通常是銅,那末事情真會簡單至此。
但熱電偶需與另外一種金屬聯接這一事實,實際上又建立了新的一對熱電偶,在系統(tǒng)中引入了極大的誤差,消除此誤差的Wei一辦法是檢測參考端的溫度(參見圖1),以硬件或硬件-軟件相結合的方式將這一聯接所貢獻的誤差減掉,純硬件消除技術由于線性化校正的因素,比軟件-硬件相結合技術受限制更大。一般情況下,參考端溫度的精確檢測用熱電阻RTD,熱敏電阻或是集成電路溫度傳感器進行。原則上說,熱電偶可由任意的兩種不同金屬構建而成,但在實踐中,構成熱電偶的兩種金屬組合已經標準化,因為標準組合的線性度及所產生的電壓與溫度的關系更趨理想。
熱電偶是一種高度非線性器件,需作大力線性化算法處置。表3的西貝克系數是某種熱電偶在規(guī)定溫度下的平均飄移。
熱電偶交貨時,其性能由制造商按NIST175標準保證(此標準已被ASTM采納),標準規(guī)定了熱電偶的溫度特性以及所用原材料的品質。與熱電阻RTD,熱敏電阻及集成電路硅傳感器相比,熱電偶的非線性極其嚴重,因此,在電路部分,必須進行復雜的算法處理,表4所示是復雜算法的一個實例,這是溫度系數,可將其在0度至1372度范圍內予以線性化,這些系數應用于以下方程:
另一種這些復雜計算方法的應用是在處理程序中制作一張對照表,這樣一張表4所列的K型熱電偶的系數計算對照表是一組11X14陣列的十進制數,范圍為0.000-13.820;
除此之外,熱電偶由于與參考溫度之間有一定的函數關系,它能確定溫度的數值,(參考溫度定義為熱電偶導線相對其焊接端的遠端端頭溫度,通常用熱電阻RTD,熱敏電阻或硅集成電路傳感器測定)。
與熱電阻RTD,熱敏電阻相比,熱電偶的熱質量較小,因此其響應速度較快。這種溫度傳感器由于其寬廣的溫度檢測范圍,在一些惡劣環(huán)境下幾乎成為獨一無二的選擇。
熱電偶比較其他溫度傳感器的成本低,結構強度大,體積小;但材料所受的任何應力,如彎曲,拉伸,壓縮均可改變熱梯度特性;此外,腐蝕介質可穿透其絕緣外皮,引起其熱力學特性的改變,給熱電偶加一保護性管殼,如陶瓷管以作高溫保護是可行的,金屬熱阱也可提供機械保護。熱電偶電壓沿兩種不同金屬的長度方向上存在電壓降,但這并不意味著長度較短的熱電偶與長度較大的熱電偶相比,肯定會有不同的西貝克系數。
線材長度短,當然會使溫度梯度陡峻,但從導電效應來看,線材長度較大的熱電偶卻有它自己的優(yōu)點,這時溫度梯度是會小些,但導電損失也減小;但從長導線的負面效應來看,長線材熱電偶的輸出電壓小,增加了后續(xù)信號調理電路的負擔。
除了輸出信號小之外,器件的線性度差需要大額度的校準,通常是以硬件與軟件實現,如以硬件實現,需要一絕對溫度參考用作為冷端參考,如以軟件實現,則以對照表或多項式計算以減小熱電偶誤差。Zui后,電磁干擾會耦合進這雙線系統(tǒng);小線規(guī)線材可用作高溫檢測,壽命也會長些,但如果靈敏度成為Zui重要因素,則大線規(guī)線材的測量性能好些。
總起來講,熱電偶由于可測溫度范圍大,機械強度高,及價格低,成為溫度測量的常選。高精度系統(tǒng)要求的線性度及準確度,要實現并不容易。如果精度要求更高,則應選擇其他的溫度傳感器。
熱電阻測溫元件的技術在持續(xù)不斷地改進,溫度測量的質量在不斷提高,但要真正實現高質量、高精度的溫度測量系統(tǒng),熱電阻的器件選擇仍然極為重要。熱電阻系一電阻性的元件,由金屬制成,如鉑,鎳,銅等,所選金屬必須具有可以預測的電阻值隨溫度變化的特性,其物理性能要易于加工制造,電阻溫度系數必須足夠大,使其電阻隨溫度的改變易于準確測量。其他的溫度檢測器件,如熱電偶,并不能讓設計人員有一種相當線性的電阻隨溫度變化特性,而熱電阻這種線性度極好的電阻溫度特性,大大簡化了信號處理電路的設計制作。圖5所示系熱電阻的溫度電阻特性,其中又以鉑電阻在三種金屬中具有Zui為精確、可靠的溫度電阻特性。
因此,鉑電阻Zui適于需要Zui高的絕對精度及重復性使用場合,它對環(huán)境的敏感度極低,與此相比,銅電阻則易產生腐蝕,長期穩(wěn)定性差,而鎳電阻雖然環(huán)境寬容度好,但適用溫度范圍較窄。
鉑電阻的對溫度響應的線性度好,化學惰性,容易加工制作直徑較細的線材或是厚度小的箔材,鉑的電阻率高于其他的熱電阻材料,在電阻值相同的情況要求用材少,適于對成本考慮較強,對熱響應講究的場合。
鉑電阻的熱響應速度影響測量時間,它還取決于電阻的殼體及本身的尺寸情況,元件本身的尺寸小,外殼尺寸也可做得小些,一般地說,響應速度要比以半導體制作的溫度傳感器響應快。
熱電阻在攝氏零度的絕對電阻數值范圍很大,可以由用戶規(guī)定,如鉑電阻的標準電阻為100歐,但也有50,100,200,5001000or2000?等阻值。